Automorphisms of the Unit Disk

Let $\mathbb{D}=\{z:|z|<1$. We want to describe all conformal maps from \mathbb{D} onto \mathbb{D}. We will postpone doing this and instead describe all linear fractional transformations T from $\partial \mathbb{D}$ onto $\partial \mathbb{D}$ that take \mathbb{D} into \mathbb{D}. A linear fractional transformation takes circles to circles, so T must take all points in \mathbb{D} to points in \mathbb{D} and all points z with $|z|>1$ to points z with $|z|>1$; or all points in \mathbb{D} to $|z|>1$ and points with $|z|>1$ to points in \mathbb{D}. This is proved using the intermediate value theorem applied to $|T(z)|$ and the fact that $|T(z)|=1$ exactly when $|z|=1$.

Theorem 1. The linear fractional transformations that map $|z|=1$ to $|z|=1$ and \mathbb{D} to \mathbb{D} can be described by

$$
\lambda \frac{z-a}{1-\bar{a} z},|a|<1,|\lambda|=1 ;
$$

and also by

$$
\frac{a z+\bar{b}}{b z+\bar{a}},|a|^{2}-|b|^{2}=1 .
$$

Proof. We'll organize the proof in steps. Assume (new meaning of the letters a, b, c, d).

$$
T z=\frac{a z+b}{c z+d} .
$$

First we prove $d \neq 0$. If $d=0$, the condition $a d-b c \neq 0$ implies $b c \neq 0$. Hence T can be written as $\frac{a}{c}+\frac{b}{c z}$. This implies that $T(0)=\infty$, which can't happen. So $d \neq 0$.

Now we know $d \neq 0$. Next we consider $c=0$. Then since $a d-b c \neq 0, a \neq 0$. We have

$$
T z=\frac{a z+b}{d}=\frac{a}{d}\left(z+\frac{b}{a}\right) .
$$

The image of $|z|=1$ by this T is a circle with center $\frac{b}{d}$ and radius $\left|\frac{a}{d}\right|$. This is supposed to be the circle $|z|=1$, so $b=0$ and $|a|=|d|$. This implies that $T z=\lambda z$, with $|\lambda|=1$. That is one of our cases.

Next we consider $d \neq 0, c \neq 0$, and prove that in this case $a \neq 0$. If $a=0$, we have

$$
T z=\frac{b}{c z+d} .
$$

This implies that $T(\infty)=0$ and that is not possible.
Finally, we prove that $b \neq 0$ when $a d c \neq 0$. If $b=0$, then

$$
T z=\frac{a z}{c z+d} .
$$

Then

$$
\begin{aligned}
|a z|^{2} & =|c z|^{2}+|d|^{2}+2 \operatorname{Re}(c \bar{d} z), \\
|a|^{2} & =|c|^{2}+|d|^{2}+2 \operatorname{Re}(c \bar{d} z) .
\end{aligned}
$$

Let $c \bar{d}=r e^{i t}$ and $z=e^{i \theta}$. Then $2 \operatorname{Re}(c \bar{d} z)=r e^{i(t+\theta)}$ and this varies with θ unless $r=0$. This implies $c \bar{d}=0$, which is contrary to our assumption. So $b \neq 0$.

Now introduce new letters and write T as

$$
T z=\lambda \frac{z-a}{1-d z} .
$$

Since $T a=0,|a|<1$. Also $T(0)=-\lambda a$ so $|\lambda a|<1$.
The following relations, when $|z|=1$,

$$
\begin{aligned}
|\lambda z|^{2}+|a \lambda|^{2}-2 \operatorname{Re}\left(\bar{a}|\lambda|^{2} z\right) & =1+|d z|^{2}+2 \operatorname{Re}(d z), \\
|\lambda|^{2}+\left.|a|^{2}| | \lambda\right|^{2} & =1+|d|^{2}+2 \operatorname{Re}\left(\left(\bar{a}|\lambda|^{2}-d\right) z\right),
\end{aligned}
$$

imply

$$
\begin{aligned}
d & =|\lambda|^{2} \bar{a} \\
|\lambda|^{2}+\left.|a|^{2}| | \lambda\right|^{2} & =1+|d|^{2},
\end{aligned}
$$

by an argument similar to a previous argument. Substituting, we get a quadratic equation for $|\lambda|^{2}$,

$$
|\lambda|^{4}-\left(1+|a|^{2}\right)|\lambda|^{2}+1,
$$

with solutions $|\lambda|^{2}=1, \frac{1}{|a|^{2}}$. Since $|a \lambda|<1$, the second solution is ruled out. So $|\lambda|=1, d=\overline{2}$, and these are the only possible linear fractional transformations that map \mathbb{D} onto \mathbb{D}. It's easy to verify that they do map \mathbb{D} onto \mathbb{D}.

By rescaling by, we can produce the second form.

